Почему самолет летает со стороны физики. Почему самолёты не могут взлететь при сильной жаре

Приход лета в некоторые жаркие уголки нашей планеты приносит с собой не только изнурительный зной, но и задержки рейсов в аэропортах. Например, в Фениксе, штат Аризона, температура воздуха на днях достигла +48°С и авиакомпании были вынуждены отменить или перенести свыше 40 рейсов. В чём причина? Разве самолёты не летают в жару? Летают, но не при всякой температуре. По сообщениям СМИ, жара представляет особую проблему для самолётов Bombardier CRJ, максимальная рабочая температура взлёта для которых составляет +47,5°С. В то же время, большие самолёты от Airbus и Boeing могут летать и при температуре до +52°С градусов или около того. Разбираемся, чем вызваны такие ограничения.

Принцип подъёмной силы

Прежде чем пояснить, почему не каждый борт способен взлететь при высокой температуре воздуха необходимо осознать сам принцип, как летают самолёты. Конечно, каждый помнит ответ ещё со школы: «Всё дело в подъёмной силе крыла». Да, это верно, но не очень убедительно. Чтобы действительно понять законы физики, которые здесь задействованы, нужно обратить внимание на закон импульса . В классической механике импульс тела равен произведению массы m этого тела на его скорость v, направление импульса совпадает с направлением вектора скорости.

На этом этапе вы можете подумать, что речь идёт об изменении импульса самолёта. Нет, вместо этого рассмотрим изменение импульса воздуха , набегающего на плоскость крыла. Представьте себе, что каждая молекула воздуха - это крошечный шар, который соударяется с самолётом. Ниже приведена диаграмма, которая показывает этот процесс.

Движущееся крыло сталкивается с воздушными шарами (то есть, молекулами воздуха). Шары изменяют свой импульс, что требует приложения силы. Поскольку действие равно противодействию, сила, которую крыло прикладывает к шарикам воздуха, имеет ту же величину, что и сила, с которой сами шарики воздействуют на крыло. Это приводит к двум результатам. Во-первых, обеспечивается подъёмная сила крыла. Во-вторых, появляется обратная сила - тяга. Вы не можете достичь подъёма без тяги .

Чтобы генерировать подъёмную силу, самолёт должен двигаться, а чтобы увеличить его скорость, вам нужна большая сила тяги. Если быть более точным, то вам потребуется ровно столько тяги, сколько нужно, чтобы сбалансировать силу сопротивления воздуха - тогда вы летите с той скоростью, с которой хотите. Как правило, эту тягу обеспечивают реактивный двигатель или пропеллер. Скорее всего, вы могли бы использовать даже ракетный двигатель, но в любом случае - вам нужен генератор тяги.

При чём здесь температура?

Если крыло сталкивается всего с одним шариком воздуха (то есть молекулой), это не приведёт к большой подъёмной силе. Чтобы увеличить подъёмную силу нужно много столкновений с молекулами воздуха. Добиться этого можно двумя путями:

  • двигаться быстрее , увеличивая число молекул, которые входят в контакт с крылом в единицу времени;
  • сконструировать крылья с большей площадью поверхности , потому что в таком случае крыло будет сталкиваться с большим числом молекул;
  • ещё один способ увеличения площади поверхности соприкосновения - использовать больший угол атаки за счёт наклона крыльев;
  • наконец, можно добиться большего числа столкновений крыла с молекулами воздуха, если плотность самого воздуха выше , то есть, количество самих молекул в единице объёма больше. Иными словами, увеличение плотности воздуха повышает подъёмную силу.

Этот вывод подводит нас к температуре воздуха. Что представляет собой воздух? Это множество микрочастиц, молекул, которые движутся прямо вокруг нас в разном направлении и с разной скоростью. И эти частицы сталкиваются друг с другом. По мере повышения температуры средняя скорость движения молекул также увеличивается. Увеличение температуры приводит к расширению газа, и одновременно - к уменьшению плотности воздуха . Вспомните, что нагретый воздух легче холодного, именно на этом явлении выстроен принцип воздухоплавания шаров-монгольфьеров.

Итак, для большей подъёмной силы нужна либо более высокая скорость, либо большая площадь крыла, либо больший угол атаки молекул на крыло. Ещё одно условие: чем выше значение плотности воздуха - тем больше подъёмная сила. Но верно и обратное: чем меньше плотность воздуха, тем меньше подъёмная сила. И это актуально для жарких уголков планеты. Из-за высокой температуры плотность воздуха слишком низкая для некоторых самолётов , её недостаточно, чтобы они могли взлететь.

Конечно, можно компенсировать снижение плотности воздуха за счёт увеличения скорости. Но как это осуществить в реальности? В таком случае необходимо устанавливать на самолёт более мощные двигатели, либо увеличивать длину взлётно-посадочной полосы. Поэтому для авиакомпаний гораздо проще некоторые рейсы просто отменить. Или, по крайней мере, перенести на вечер, раннее утро, когда температура окружающей среды буде ниже максимально допустимого предела.

Часто, наблюдая за летящим в небе самолётом, мы задаёмся вопросом, как самолёт поднимается в воздух. Как он летит? Ведь самолёт значительно тяжелее воздуха.

Почему поднимается дирижабль

Мы знаем, что аэростаты и дирижабли поднимает в воздух сила Архимеда . Закон Архимеда для газов гласит: «Н а тело, погружённое в газ, действует выталкивающая сила, равная силе тяжести вытесненного этим телом газа» . Эта сила противоположна по направлению силе тяжести. То есть, сила Архимеда направлена вверх.

Если сила тяжести равна силе Архимеда, то тело находится в равновесии. Если же сила Архимеда больше силы тяжести, то тело поднимается в воздухе. Так как баллоны аэростатов и дирижаблей заполняют газом, который легче воздуха, то сила Архимеда выталкивает их вверх. Таким образом, сила Архимеда является подъёмной силой для летательных аппаратов легче воздуха.

Но сила тяжести самолёта значительно превышает силу Архимеда. Следовательно, поднять самолёт в воздух она не может. Так почему же он всё-таки взлетает?

Подъёмная сила крыла самолёта

Возникновение подъёмной силы часто объясняют разностью статических давлений воздушных потоков на верхней и нижней поверхности крыла самолёта.

Рассмотрим упрощённый вариант появления подъёмной силы крыла, которое располагается параллельно потоку воздуха. Конструкция крыла такова, что верхняя часть его профиля имеет выпуклую форму. Воздушный поток, обтекающий крыло, разделяется на два: верхний и нижний. Скорость нижнего потока остаётся практически неизменной. А вот скорость верхнего возрастает за счёт того, что он должен преодолеть больший путь за то же время. По закону Бернулли, чем выше скорость потока, тем ниже давление в нём. Следовательно, давление над крылом становится ниже. Из-за разницы этих давлений возникает подъёмная сила , которая толкает крыло вверх, а вместе с ним поднимается и самолёт. И чем больше эта разница, тем больше и подъёмная сила.

Но в этом случае невозможно объяснить, почему подъёмная сила появляется, когда профиль крыла имеет вогнуто-выпуклую или двояковыпуклую симметричную форму. Ведь здесь воздушные потоки проходят одинаковое расстояние, и разницы давлений нет.

На практике профиль крыла самолёта располагается под углом к воздушному потоку. Этот угол называется углом атаки . А поток воздуха, сталкиваясь с нижней поверхностью такого крыла, скашивается и приобретает движение вниз. Согласно закону сохранения импульса на крыло будет действовать сила, направленная в противоположном направлении, то есть, вверх.

Но эта модель, описывающая возникновение подъёмной силы, не учитывает обтекание верхней поверхности профиля крыла. Поэтому в данном случае величина подъёмной силы занижается.

На самом деле всё намного сложнее. Подъёмная сила крыла самолёта не существует как самостоятельная величина. Это одна из аэродинамических сил.

Набегающий поток воздуха воздействует на крыло с силой, которая называется полной аэродинамической силой . А подъёмная сила - это одна из составляющих этой силы. Вторая составляющая – сила лобового сопротивления. Вектор полной аэродинамической силы – это сумма векторов подъёмной силы и силы лобового сопротивления. Вектор подъёмной силы направлен перпендикулярно вектору скорости набегающего воздушного потока. А вектор силы лобового сопротивления – параллельно.

Полная аэродинамическая сила определяется как интеграл от давления вокруг контура профиля крыла:

Y – подъёмная сила

Р – тяга

– граница профиля

р – величина давления вокруг контура профиля крыла

n – нормаль к профилю

Теорема Жуковского

Как образуется подъёмная сила крыла, впервые объяснил русский учёный Николай Егорович Жуковский, которого называют отцом русской авиации. В 1904 г. он сформулировал теорему о подъёмной силе тела, которое обтекается плоскопараалельным потоком идеальной жидкости или газа.

Жуковский ввёл понятие циркуляции скорости потока, что позволило учесть скос потока и получить более точное значение подъёмной силы.

Подъемная сила крыла бесконечного размаха равна произведению плотности газа (жидкости), скорости газа (жидкости), циркуляции скорости потока и длины выделенного отрезка крыла. Направление действия подъемной силы получается поворотом вектора скорости набегающего потока на прямой угол против циркуляции.

Подъёмная сила

Плотность среды

Скорость потока на бесконечности

Циркуляция скорости потока(вектор направлен перпендикулярно плоскости профиля, направление вектора зависит от направления циркуляции),

Длина отрезка крыла (перпендикулярно плоскости профиля).

Величина подъёмной силы зависит от многих факторов: угла атаки, плотности и скорости воздушного потока, геометрии крыла и др.

Теорема Жуковского положена в основу современной теории крыла.

Самолёт может взлететь только в том случае, если подъёмная сила больше его веса. Скорость он развивает с помощью двигателей. С увеличением скорости увеличивается и подъёмная сила. И самолёт поднимается вверх.

Если подъёмная сила и вес самолёта равны, то он летит горизонтально. Двигатели самолёта создают тягу – силу, направление которой совпадает с направлением движения самолёта и противоположно направлению лобового сопротивления. Тяга толкает самолёт сквозь воздушную среду. При горизонтальном полёте с постоянной скоростью тяга и лобовое сопротивление уравновешены. Если увеличить тягу, самолёт начнёт ускоряться. Но и лобовое сопротивление увеличится тоже. И вскоре они снова уравновесятся. И самолёт будет лететь с постоянной, но большей скоростью.

Если скорость уменьшается, то становится меньше и подъёмная сила, и самолёт начинает снижаться.

Самолеты, особенно вблизи, впечатляют своими г абаритами и ма ссой. Остается при этом не понятным, как такой громоздкий и тяжелый объект поднимается в небесную высь. Притом, ответить на это могут даже не все взрослые, а вопросы детей частенько способны поставить в тупик. Возникновение подъёмной силы часто объясняют разностью статических давлений воздушных потоков на верхней и нижней поверхности крыла самолёта.

Конструкция крыла такова, что верхняя часть его профиля имеет выпуклую форму. Воздушный поток, обтекающий крыло, разделяется на два: верхний и нижний. Скорость нижнего потока остаётся практически неизменной. А вот скорость верхнего возрастает за счёт того, что он должен преодолеть больший путь за то же время. Следовательно, давление над крылом становится ниже. Из-за разницы этих давлений возникает подъёмная сила, которая толкает крыло вверх, а вместе с ним поднимается и самолёт. И чем больше эта разница, тем больше и подъёмная сила
Самолёт может взлететь только в том случае, если подъёмная сила больше его веса. Скорость он развивает с помощью двигате

лей. С увеличением скорости увеличивается и подъёмная сила. И самолёт поднимается вверх. Каждый из вас делал, наверное, бумажные самолетики и с силой запускал их. Современный самолет, даже весом в десятки тонн, его крыло должно иметь достаточную площадь. На подъемную силу крыла влияет множество параметров, таких как профиль, площадь, форма крыла в плане, угол атаки, скорость и плотность воздушного потока. Каждый самолет имеет свою минимальную скорость, при которой он может взлетать и лететь, не падая. Так, минимальная скорость современных пассажирских самолетов находится в пределах от 180 до 250 км/ч. Для того чтобы подъемная сила смогла поднять в воздух Именно если такой самолетик с силой бросить вверх, он может далеко полететь, а если пустить слегка — упадет сразу же на землю. Значит, чтобы бумажный самолетик удерживался в воздухе, он должен постоянно двигаться вперед. Большие самолеты двигаются вперед за счет мощных двигателей, вращающих пропеллер. Быстро вращающийся пропеллер выбрасывает за себя огромные массы воздуха, обеспечивая поступательное движение самолета.

Если подъёмная сила и вес самолёта равны, то он летит горизонтально.

При создании самолета крылу уделяется огромное внимание, потому что именно от него будет зависеть безопасность выполнения полетов. Глядя в иллюминатор, пассажир замечает, что оно гнется и вот-вот сломается. Не бойтесь, оно выдерживает просто колоссальные нагрузки.
Если откажет двигатель самолета - ничего страшного, самолет долетит на втором. Если отказали оба двигателя

История знает случаи, что и в таких обстоятельствах садились на посадку. Шасси? Ничего не мешает самолету сесть на брюхо, при соблюдении определенных мер пожарной безопасности он даже не загорится. Но самолет никогда не сможет лететь без крыла.

Почему самолеты летают так высоко?

Потому что именно оно создает подъемную силу. Высота полета современных реактивных самолетов находится в пределах от 5000 до 10000 метров над уровнем моря. Это объясняется очень просто: на такой высоте плотность воздуха намного меньше, а, следовательно, меньше и сопротивление воздуха. Самолеты летают на больших высотах, потому что при полете на высоте 10 километров самолет расходует на 80% меньше горючего, чем при полете на высоте в один километр. Однако почему же тогда они не летают еще выше, в верхних слоях атмосферы, где плотность воздуха еще меньше? Дело в том, что для создания необходимой тяги двигателем самолета необходим определенный минимальный запас воздуха. Поэтому у каждого самолета имеется наибольший безопасный предел высоты полета, называемый также «практический потолок». К примеру, практический потолок самолета Ту-154 составляет около 12100 метров.

Почему самолету нужно сжечь все топливо перед посадкой?

Резюмируя, можно сказать, что самолет дожигает топливо для того, чтобы нагрузка на шасси при посадке не превосходила максимальную, в противном случае шасси просто не выдержит.
При проектировании самолета (как гражданского, так и военного, кстати) и в частности его шасси всегда есть такой параметр, как максимальная посадочная масса. Совершенно очевидно, что это максимальная масса, которую выдержит шасси при посадке. Когда самолет готовят к выполнению задания в него заливают столько топлива, что бы долететь до запланированного места посадки + навигационный запас топлива. Когда все штатно, топливо не сливают. Если экипаж принял решение сажать машину, а ее масса превышает максимальную посадочную, то от топлива избавляются. Особенно часто такие ситуации происходят в случае серьезного отказа сразу после взлета. Так же следует заметить, что не все самолеты просто «дожигают» топливо, чтобы «сбросить вес», некоторые оборудованы системой аварийного слива топлива.

Многие боятся упасть вниз с высоты 10 км. Это невозможно из-за сильного давления под крыльями самолета. Он держится на воздухе не хуже, чем машина на шоссе. Его можно поставить на хвост, повернуть вокруг своей оси на 100 градусов, направить вниз — и если отпустить штурвал, то самолет просто будет покачиваться в воздухе, как лодка на волнах.

Самолет – это летательный аппарат, имеющий массу больше массы воздуха, и подъемную силу, созданную по аэродинамическому принципу (отбрасывание вниз части воздуха за счет обтекания крыла). Подъемная сила - это и есть ответ на вопрос о том, почему самолеты летают. Ее создают несущие поверхности (в основном, крылья) при движении навстречу воздушному потоку самолета, развивающего скорость при помощи силовой установки или турбины. За счет силовой установки, создающей силу тяги, самолет способен преодолевать сопротивление воздуха.

Самолеты летают по законам физики

В основе аэродинамики как науки заложена теорема Николая Егоровича Жуковского, выдающегося русского ученого, основателя аэродинамики, которая была сформулирована еще в 1904 году. Спустя год, в ноябре 1905 года Жуковский изложил свою теорию создания подъемной силы крыла летательного аппарата на заседании Математического общества.

Для того чтобы подъемная сила смогла поднять в воздух современный самолет, даже весом в десятки тонн, его крыло должно иметь достаточную площадь. На подъемную силу крыла влияет множество параметров, таких как профиль, площадь, форма крыла в плане, угол атаки, скорость и плотность воздушного потока. Каждый самолет имеет свою минимальную скорость, при которой он может взлетать и лететь, не падая. Так, минимальная скорость современных пассажирских самолетов находится в пределах от 180 до 250 км/ч.

Почему самолеты летают с разной скоростью?

От требуемой скорости самолета зависит и его размер. Площадь крыльев медленных транспортных самолетов должна быть достаточно большой, так как подъемная сила крыла и скорость, развиваемая самолетом, прямо пропорциональны. Большая площадь крыльев у медленных самолетов обусловлена тем, что при достаточно малых скоростях подъемная сила невелика.

Скоростные самолеты, как правило, имеют гораздо меньшие по размерам крылья, обладающие при этом достаточной подъемной силой. Чем меньше плотность воздуха, тем меньшей становится подъемная сила крыла, поэтому на большой высоте скорость самолета должна быть выше, чем при полете на малой высоте.

Почему самолеты летают так высоко?

Высота полета современных реактивных самолетов находится в пределах от 5000 до 10000 метров над уровнем моря. Это объясняется очень просто: на такой высоте плотность воздуха намного меньше, а, следовательно, меньше и сопротивление воздуха. Самолеты летают на больших высотах, потому что при полете на высоте 10 километров самолет расходует на 80% меньше горючего, чем при полете на высоте в один километр. Однако почему же тогда они не летают еще выше, в верхних слоях атмосферы, где плотность воздуха еще меньше? Дело в том, что для создания необходимой тяги двигателем самолета необходим определенный минимальный запас воздуха. Поэтому у каждого самолета имеется наибольший безопасный предел высоты полета, называемый также «практический потолок». К примеру, практический потолок самолета Ту-154 составляет около 12100 метров.

Самолеты умеют летать , поскольку на большой скорости крыло самолета создаёт силу, толкающую самолёт вверх. Эта сила называется подъёмной силой крыла самолёта. Согласно законам физики, давление воздуха в тех местах, где скорость потока выше, будет более низким, и наоборот. Эта разница давлений и создаёт подъёмную силу крыла.

Научной основой аэродинамики является теорема великого русского учёного Николая Егоровича Жуковского, сформулированная им в 1904 году. Жуковский представил теорию образования подъёмной силы самолёта на заседании Математического общества в ноябре 1905 года.

Крыло современного самолёта имеет достаточную площадь, чтобы подъёмная сила могла поднимать самолёт вверх, даже при весе самолёта в десятки тонн. Подъемная сила крыла зависит от множества факторов: профиля, площади, формы крыла в плане, угла атаки, скорости и плотности потока воздуха. У каждого самолёта есть минимальная скорость, при которой самолет может взлетать, лететь и не падать. У современных пассажирских самолётов она колеблется в пределах от 180 до 250 км/ч.

Почему самолеты летают так высоко?
Современные реактивные самолёты летают на высотах от 5 до 11 тысяч метров над уровнем моря по очень простой причине: на таких высотах воздух гораздо менее плотный, что позволяет самолёту достигать меньшего сопротивления воздуха. Экономия горючего при полёте на 10,000 метров может достигать 80% от полёта на высоте 1000 метров. Поэтому самолёты и летают на больших высотах. Однако что мешает им подняться ещё выше, где воздух ещё более разрежен? — спросите вы. Дело в том, что двигателям самолётов нужно определённое минимальное количество воздуха для сжигания, иначе двигатель не сможет создавать необходимую тягу. Поэтому у каждого самолёта есть так называемый «практический потолок» — наибольшая высота, на которой самолёт может безопасно лететь. Например, у Ту-154 практический потолок равен примерно 12100 метрам.

На этом коротком видео наглядно продемонстрирован принцип подъёмной силы крыла:

Сегодня 9 февраля 2020 года. А вы знаете, какой сегодня праздник ?



Расскажите Почему самолеты летают друзьям в социальных сетях:

Похожие статьи